Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.908
Filtrar
1.
Carbohydr Polym ; 333: 121963, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494220

RESUMO

PSCP, a novel water-soluble polysaccharide, was extracted from the root of Saussurea costus and subsequently purified using DEAE-52 cellulose and Sephadax G-50 columns. The elucidation of its structure involved various techniques including HPGPC, FT-IR, HPLC-ELSD, GC-MS, NMR, AFM, and SEM. The results show that PSCP was a homogeneous heteropoly saccharide having molecular weight of 4131 Da and mainly composed of 1-α-D-Glcp-(-2-ß-D-Fruf-1-)23-2-ß-D-Fruf. The anti-psoriasis activity of PSCP was evaluated in imiquimod-induced psoriasis in Balb/C mice. This study revealed that treatment with PSCP resulted in a significant improvement in the pathological morphology of the skin and a reduction in the PASI score. Analysis of liver RNA-Seq data indicated that the MAPK signaling pathway may play a crucial role in the ability of PSCP to ameliorate psoriasis. PSCP was found to effectively inhibit the phosphorylation of JNK, ERK, and p38, as well as down-regulate the expression of the transcription factor AP-1 (c-fos and c-jun) in the nucleus, thereby reducing the expression of inflammatory factors. These findings suggest that PSCP holds promise as a novel therapeutic approach for the treatment of psoriasis.


Assuntos
Compostos Organofosforados , Psoríase , Saussurea , Animais , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química
2.
Int J Biol Macromol ; 265(Pt 1): 130706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458274

RESUMO

Polysaccharides are commonly used as low-toxicity anticancer active substances to enhance the chemotherapeutic effect of cisplatin and reduce toxicity. Brassica rapa L. polysaccharides have been shown to have hepatoprotective effects; however, their anticancer effects in combination with cisplatin and their mechanisms have not been reported. An acidic polysaccharide from Brassica rapa L. (BRCPe) using hydroalcohol precipitation-assisted sonication was Characterized. The effects of BRCPe combined with cisplatin treatment on tumor growth in hepatocellular carcinoma mouse model were investigated. The impact of the combined treatment on the composition of intestinal flora, levels of short-chain fatty acids and endogenous metabolites in tumor mice were analyzed based on macrogenomic and metabolomic data Our results showed that the BRCPe combined with low-dose Cisplatin group showed better inhibitory activity against hepatocellular carcinoma cell growth in terms of tumor volume, tumor weight, and tumor suppression rate compared with the BRCPe and Cisplation alone group, and reduced the side effects of cisplatin-induced body weight loss, immune deficiency, and liver injury. Furthermore, BRCPe combined with cisplatin was found to induce apoptosis in hepatocellular carcinoma cell through the activation of the caspase cascade reaction. In addition, the intervention of BRCPe were observed to modulate the composition, structure and functional structure of intestinal flora affected by cisplatin. Notably, Lachnospiraceae bacteria, Lactobacillus murinus, Muribaculaceae, and Clostridiales bacteria were identified as significant contributors to microbial species involved in metabolic pathways. Moreover, BRCPe effectively regulate the metabolic disorders in cisplatin-induced hepatocellular carcinoma mice. In conclusion, BRCPe could potentially function as an adjuvant or dietary supplement to augment the effectiveness of cisplatin chemotherapy through the preservation of a more efficient intestinal microenvironmental homeostasis.


Assuntos
Brassica rapa , Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Doenças Metabólicas , Camundongos , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Polissacarídeos/uso terapêutico , Doenças Metabólicas/tratamento farmacológico
3.
Front Immunol ; 15: 1369110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455058

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Medicina Tradicional Chinesa , Adjuvantes Imunológicos/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
4.
J Ethnopharmacol ; 328: 118090, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521432

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Morinda officinalis How is called "Ba-Ji-Tian" in Traditional Chinese Medicine (TCM), which belongs to the genus Rubiaceae and is widely used for medicinal purposes in China and other eastern Asian countries. Morinda officinalis How polysaccharides (MOPs) are one of the key bioactive components, and have a variety of biological activities, such as antioxidation, antifatigue, enhanced immunity, antiosteoporosis, ect. AIM OF THE REVIEW: This review is aimed at providing comprehensive information of the latest preparation technologies, structural characterization, and pharmacological effects of MOPs. A more in-depth research on the structure and clinical pharmacology of the MOPs was explored. It could lay a foundation for further investigate the pharmacological activities and guide the safe clinical practice of MOPs. MATERIALS AND METHODS: The Web of Science, PubMed, Scifinder, Google Scholar, CNKI, Wanfang database, and other online database are used to search and collect the literature on extraction and separation methods, structural characterization, and pharmacological activities of MOPs publisher from 2004 to 2023. The key words are "Morinda officinalis polysaccharides", "extraction", "isolation", "purification" and "pharmacological effects". RESULTS: Morinda officinalis has been widely used in tonifying the kidney yang since ancient times, and is famous for one of the "Four Southern Medicines" in China for the treatment of depression, osteoporosis, rheumatoid arthritis, infertility, fatigue and Alzheimer's disease. The active ingredients of Morinda officinalis that have been researched on the treatment of depression and osteoporosis are mostly polysaccharides and oligosaccharides. The content of polysaccharides varies with different methods of extraction, separation and purification. MOPs have a wide range of pharmacological effects, including antioxidant, antifatigue, immunomodulatory, antiosteoporosis, and regulation of spermatogenesis activities. These pharmacological properties lay a foundation for the treatment of oxidative stress, osteoporosis, spermatogenic dysfunction, immunodeficiency, inflammation and other diseases with MOPs. CONCLUSIONS: At present, MOPs have been applied in the treatment of skeletal muscle atrophy, varicocele, osteoporosis, because of its effects of enhancing immunity, improving reproduction and antioxidant. However, the structure-activity relationship of these effects are still not clear. The more deeply study could be conducted on the MOPs in the future. The toxicology and clinical pharmacology, as well as mechanism of action of MOPs were also needed to deeply studied and clarified. This paper could lay the foundation for the application and safety of MOPs in multifunctional foods and drugs.


Assuntos
Medicamentos de Ervas Chinesas , Morinda , Osteoporose , Masculino , Humanos , Morinda/química , Antioxidantes , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Oligossacarídeos , Osteoporose/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
5.
J Biomater Appl ; 38(9): 943-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462970

RESUMO

Bletilla striata polysaccharide (BSP) was added to curdlan to form a blend hydrogel through a simple heating-cooling procedure to improve the hydrophilicity and healing efficacy of curdlan-based hydrogel used in wound healing. We explored the interplay between BSP and curdlan, studied how BSP concentration affects the physical properties and microstructures of hydrogels, and examined the biocompatibility and healing properties of the blend hydrogel. It was proved that the hydrogel framework was primarily formed by ordered arranged curdlan molecules, with BSP uniformly dispersed and intertwined with curdlan through hydrogen bonding. This effectively improved its hydrophilicity and strengthened the microstructure. Curdlan was found to be compatible with BSP. The blend hydrogel B3Cd3 (containing 1.5% BSP and 1.5% curdlan, w/v) was identified as the optimal formulation based on its higher water adsorption, water retention, thermal stability and interconnected microstructure, and was thus selected for further research. In vitro experiments revealed the highest cell viability of L929 in B3Cd3 extracts compared to those extracts of single-component curdlan hydrogel (Cd). In vivo, animal studies indicated that the B3Cd3 accelerated wound healing compared to the control group by improving re-epithelialization and blood vessel regeneration. On Days 3 and 11, the therapeutic benefits of B3Cd3 exceeded those of the Cd group, and no significant differences were observed in wound healing rates between the B and B3Cd3 groups from Day 7. The study proves that BSP enhances the physical and healing properties, as well as cell proliferation, of the curdlan-based hydrogel. The blend hydrogel B3Cd3, with its exceptional properties, holds potential for future application as a material for non-infected wound healing.


Assuntos
Hidrogéis , Orchidaceae , beta-Glucanas , Animais , Hidrogéis/farmacologia , Cádmio/farmacologia , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Orchidaceae/química , Água/farmacologia
6.
Exp Dermatol ; 33(3): e15027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514926

RESUMO

Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied ß-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/ß-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/ß-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/ß-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.


Assuntos
Hemangioma , Polissacarídeos , Via de Sinalização Wnt , beta Catenina , Animais , Criança , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hemangioma/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
7.
Int J Biol Macromol ; 264(Pt 1): 130622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447833

RESUMO

T2D and its complications are significant threats to human health and are among the most concerning metabolic diseases worldwide. Previous studies have revealed that Glycyrrhiza uralensis polysaccharide extract (GUP) exhibits remarkable antioxidant capabilities and inhibits alpha-glucosidase activity. However, whether GUP improves glycemic control in T2D is unknown. This study aims to investigate the effects of GUP on glucose and lipid metabolism as well as the intestinal microbiota in HFD/STZ-induced T2D. The results demonstrated that GUP could significantly ameliorate hyperglycemia, insulin resistance, oxidative stress, and reduce liver lipid levels in T2D mice. Furthermore, it also enhanced the integrity of the intestinal barrier in T2D mice by reducing the levels of pro-inflammatory cytokines and serum LPS levels. Interestingly, GUP treatment significantly lowered serum creatinine and urea nitrogen levels, mitigating renal function deterioration and interstitial fibrosis. Additionally, GUP intervention increased the α diversity of gut microbiota, promoting beneficial species like Akkermansia, Lactobacillus, Romboutsia and Faecalibaculum, while decreasing harmful ones such as Bacteroides, Escherichia-Shigella, and Clostridium sensu stricto 1 in T2D mice. Overall, this study highlights the potential of GUP in alleviating complications and enhancing intestinal health in T2D mice, providing valuable insights into dietary strategies for diabetes control and overall health improvement.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glycyrrhiza uralensis , Camundongos , Humanos , Animais , Glycyrrhiza uralensis/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL
8.
Int J Biol Macromol ; 264(Pt 1): 130510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447847

RESUMO

Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 â†’ and →4)-α-D-GalpA-(1 â†’ 2,4)-α-L-Rhap-(1 â†’ as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.


Assuntos
Colite , Cucurbita , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Pectinas/farmacologia , Pectinas/metabolismo , Anti-Inflamatórios/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
9.
Int J Biol Macromol ; 265(Pt 2): 130988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518942

RESUMO

Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â†’ [2)-ß-D-Fruf-(1 â†’ 2)-ß-D-Fruf-(1]26 â†’ 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.


Assuntos
Codonopsis , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Codonopsis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Antioxidantes/farmacologia
10.
Int J Biol Macromol ; 265(Pt 2): 130697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490395

RESUMO

Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a ß-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.


Assuntos
Fluoruracila , Polissacarídeos , Animais , Camundongos , Linhagem Celular Tumoral , Fluoruracila/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Autofagia , Chá
11.
Int J Biol Macromol ; 262(Pt 2): 129936, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309391

RESUMO

Mulberry (Morus alba L.), a kind of common fruits widely cultivated worldwide, has been proven various biological activities. However, its potential role in the progression of knee osteoarthritis (KOA) remains unclear. This study aims to investigate the potential protective effects of crude polysaccharide extracted from mulberry fruit, referred to as a complex blend of polysaccharides and other unidentified extracted impurities, on KOA progression. The KOA rats were established by injection of 1 mg sodium monoiodoacetate into knee, and administrated with crude mulberry polysaccharide (Mup) by gastric gavage for 4 weeks. Furthermore, intestinal bacteria clearance assay (IBCA) and fecal microbiota transplantation were conducted for the evaluation of the effect of gut microbiota (GM) on KOA. Our findings demonstrated that Mup, particularly at a dosage of 200 mg/kg, effectively improved abnormal gait patterns, reduced the level of inflammation, mitigated subchondral bone loss, restored compromised joint surfaces, alleviated cartilage destruction, and positively modulated the dysregulated profile of GM in KOA rats. Moreover, IBCA compromised the protective effects of Mup, while transplantation of fecal bacteria from Mup-treated rats facilitated KOA recovery. Collectively, our study suggested that Mup had the potential to ameliorate the progression of KOA, potentially through its modulation of GM profile.


Assuntos
Microbioma Gastrointestinal , Morus , Osteoartrite do Joelho , Ratos , Animais , Osteoartrite do Joelho/tratamento farmacológico , Frutas , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
12.
Int J Biol Macromol ; 263(Pt 2): 130451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408582

RESUMO

Atherosclerosis (AS) is the common basis for the onset of cardiovascular events. The lipid metabolism theory considers foam cell formation as an important marker for the initiation of AS. Fucoidan is an acidic polysaccharide that can reduce lipid accumulation in foam cells. Studies show that tea polysaccharides can be transported to lysosomes via the tubulin pathway. However, the specific mechanism of action of fucoidan on foam cells has not been extensively studied. Therefore, we further explored the mechanism of action of fucoidan and evaluated whether it could reduce lipid accumulation in foam cells by affecting the expression of lysosomal pathway-related genes and proteins. In this study, three inhibitors, CPZ, EIPA, and colchicine, were used to inhibit endocytosis, macropinocytosis, and the tubulin pathway, respectively, to study the pathways of action. Transcriptomics and proteomics analysis, as well as western blotting and qRT-PCR were used to determine the effects of fucoidan and the inhibitors on lysosomal genes and proteins. Fucoidan could enter foam cells through both endocytosis and via macropinocytosis, and then further undergo intracellular transport via the tubulin pathway. After fucoidan treatment, the expression of lysosomal pathway-related genes and proteins including LAMP2, AP3, AP4, MCOLN1, and TFEB in foam cells increased significantly (P < 0.01). However, the expression of lysosomal genes and proteins after colchicine intervention was comparable with that in the model group. Therefore, the tubulin pathway inhibited by colchicine is an important pathway for the transport and distribution of fucoidan within cells. In summary, fucoidan may be transported to lysosomes via the tubulin pathway and may enhance the expression of lysosomal genes, promoting autophagy, thereby accelerating lipid clearance in foam cells. Due to its significant lipid-lowering effect, it can be used in the clinical treatment of AS.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Tubulina (Proteína)/metabolismo , Aterosclerose/tratamento farmacológico , Polissacarídeos/uso terapêutico , Lipídeos/farmacologia , Lisossomos/metabolismo , Colchicina/metabolismo
13.
Int J Biol Macromol ; 263(Pt 2): 130452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417755

RESUMO

As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.


Assuntos
Ácidos Hexurônicos , NF-kappa B , Pneumonia , Camundongos , Animais , Lipopolissacarídeos , Ramnose , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/análise , Transdução de Sinais , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico
14.
Int J Biol Macromol ; 262(Pt 1): 130062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340923

RESUMO

Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder. Polysaccharides from Phellinus linteus (PLP) have been found to have anti-diabetes effects, but the mechanism has not been elucidated. The purpose of this study was to investigate the mechanism of PLP on T2DM through the gut microbiota and bile acids metabolism. The T2DM rat model was induced by a high-fat high-carbohydrate (HFHC) diet and streptozocin (30 mg/kg). We found that PLP ameliorated diabetes symptoms. Besides, PLP intervention increased the abundance of g_Bacteroides, g_Parabacteroides, and g_Alistioes, which are associated with the biosynthesis of short-chain fatty acids (SCFAs) and bile acids (BAs) metabolism. Meanwhile, untargeted and targeted metabolomics indicated that PLP could regulate the composition of BAs and increase the levels of SCFAs. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the expression levels of BAs metabolism enzymes in the liver. Finally, the results of correlation analysis and Glucagon-like peptide-1 (GLP-1) showed that PLP stimulated the release of GLP-1 by regulating SCFAs and BAs. In conclusion, this study demonstrated that PLP can regulate gut microbiota and BAs metabolism to promote GLP-1 secretion, thereby increasing insulin release, decreasing blood glucose and attenuating T2DM.


Assuntos
Basidiomycota , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ácidos Graxos Voláteis , Ácidos e Sais Biliares
15.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338476

RESUMO

The present work aimed to study the feasibility of Angelica sinensis polysaccharide (ASP) as an instinctive liver targeting drug delivery carrier for oridonin (ORI) in the treatment of hepatocellular carcinoma (HCC). ASP was reacted with deoxycholic acid (DOCA) via an esterification reaction to form an ASP-DOCA conjugate. ORI-loaded ASP-DOCA nanoparticles (ORI/ASP-DOCA NPs) were prepared by the thin-film water method, and their size was about 195 nm in aqueous solution. ORI/ASP-DOCA NPs had a drug loading capacity of up to 9.2%. The release of ORI in ORI/ASP-DOCA NPs was pH-dependent, resulting in rapid decomposition and accelerated drug release at acidic pH. ORI/ASP-DOCA NPs significantly enhanced the accumulation of ORI in liver tumors through ASGPR-mediated endocytosis. In vitro results showed that ORI/ASP-DOCA NPs increased cell uptake and apoptosis in HepG2 cells, and in vivo results showed that ORI/ASP-DOCA NPs caused effective tumor suppression in H22 tumor-bearing mice compared with free ORI. In short, ORI/ASP-DOCA NPs might be a simple, feasible, safe and effective ORI nano-drug delivery system that could be used for the targeted delivery and treatment of liver tumors.


Assuntos
Angelica sinensis , Carcinoma Hepatocelular , Acetato de Desoxicorticosterona , Diterpenos do Tipo Caurano , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Polissacarídeos/uso terapêutico
16.
Int J Biol Macromol ; 261(Pt 2): 129874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307430

RESUMO

Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1ß, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carragenina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Citocinas/metabolismo , Superóxido Dismutase/farmacologia , Cicatrização , Edema/induzido quimicamente , Edema/tratamento farmacológico , Mediadores da Inflamação/farmacologia
17.
Int J Biol Macromol ; 261(Pt 2): 129906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309392

RESUMO

The study aimed to explore the protective effects of Inonotus obliquus polysaccharide (IOP) on Neospora caninum (N. caninum) infection. Our data showed that the survival rate of the mice was the highest and the survival time was the longest when the IOP was 2 mg/10 g. In agreement with these observations, IOP alleviated the pathological damage in the various organs and tissues of the mice. Compared with that in the Neosporidium infection model group, the content of N. caninum in the heart, liver, spleen, lung, kidney and brain, determined through HE staining, was significantly lower. In addition, IOP inhibited the levels of immunoglobulin G1 (IgG1) and immunoglobulin G2 (IgG2a) from the 21st to 42nd day of the administration group, whereas the levels of interleukin-12 (IL-12) and serum tumor necrosis factor alpha (TNF-α) were down-regulated at 7 d - 42 d. The production of CD4+ T lymphocytes was promoted, the number of CD8+ T lymphocytes were significantly lower and the CD4+/CD8+ ratio was significantly elevated. Furthermore, IOP effectively balanced the levels of hormones including gonadotropin-releasing hormone (GnRH), luteotropic hormone (LH) and testosterone (T) in male mice, and progesterone (PROG), estradiol (E2) and prolactin (PRL) in female mice. These findings demonstrate that IOP exerts protective effects against pathological damage caused by N. caninum infection in mice, and improve the immune function of the organism and regulate the secretion balance of sex hormones.


Assuntos
Coccidiose , Inonotus , Neospora , Feminino , Masculino , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Hormônio Luteinizante , Coccidiose/tratamento farmacológico , Coccidiose/patologia , Imunoglobulinas
18.
Int J Biol Macromol ; 261(Pt 2): 129917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309407

RESUMO

Echinacea purpurea polysaccharide (EPP) exhibit various pharmacological activities, including immunomodulatory, anti-inflammatory, and anti-tumor effects. In this study, we investigated the potential mechanism of EPP intervention in hepatocellular carcinoma (HCC). The results demonstrated that EPP effectively mitigated liver injury caused by HCC, inhibited the proliferation of HCC, and induced apoptosis. Following EPP intervention, there was a significant increase in propionic acid and butyric acid-producing gut microbiota such as Coprococcus, Clostridium and Roseburia, leading to enhanced expression of intestinal tight junction proteins and the repair of the intestinal barrier. This controls lipopolysaccharide (LPS) leakage, which in turn inhibits the TLR4/NF-κB pathway and reduces the expression of inflammatory factors such as IL-6, as well as migration factors like MMP-2. Metabolomics revealed the downregulation of pyrimidine metabolism and nucleotide metabolism, along with the upregulation of butyrate metabolism in tumor cells. This study demonstrated that EPP effectively regulated LPS leakage by modulating gut microbes, and this modulation influenced the TLR4/NF-κB pathway, ultimately disrupting tumor cell survival induced by HCC in mice.


Assuntos
Carcinoma Hepatocelular , Echinacea , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animais , Camundongos , NF-kappa B/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
19.
Int J Biol Macromol ; 262(Pt 2): 130056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365160

RESUMO

It has been claimed that Dendrobium officinale polysaccharides (PSs) can degrade into oligosaccharide and then transform into short-chain fatty acids in the intestine after oral administration, and play an anti-colitis-associated cancer (CAC) effect by inhibiting intestinal inflammation. However, the material basis and core chemical structure underlying the anti-colon cancer properties of PSs have not yet been elucidated. In this study, PSs were degraded into enzymatic oligosaccharides (OSs) using ß-mannanase. The results of in vivo experiments revealed that PSs and OSs administered by gastric lavage had similar antitumor effects in CAC mice. OS-1 (Oligosaccharide compounds 1) and OS-2 (Oligosaccharide compounds 2) were further purified and characterized from OSs, and it was found that OS-1, OS-2, OSs, and PSs had similar and consistent anti-inflammatory activities in vitro. Chemical structure comparison and evaluation revealed that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 was the least common PS structure with anti-colitic activity. Therefore, our findings suggest that OSs are the material basis for PSs to exert anti-CAC activity and that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 is the core chemical structure of PSs against CAC.


Assuntos
Neoplasias Associadas a Colite , Dendrobium , Camundongos , Animais , Dendrobium/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Oligossacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
Int J Biol Macromol ; 263(Pt 1): 130321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382780

RESUMO

As a global public health issue, the treatment of acute liver injury (ALI) is severely limited due to the lack of specific drugs. In order to address the challenges, innovative strategies for selenium nanoparticles (Se NPs) with excellent antioxidant properties have been actively developed to effectively prevent ALI. However, the functional activity of Se NPs is severely affected by poor stability and bioavailability. The aim of this work is to develop a stabilization system (ASP-Se NPs) for Angelica sinensis polysaccharides modified Se NPs. The results showed that ASP-Se NPs with smaller size (62.38 ± 2.96 nm) showed good stability, specific accumulation in liver and enhanced cell uptake, thus exerting strong antioxidant and anti-inflammatory functions. The results of in vivo experiments further confirmed that ASP-Se NPs effectively prevented CCl4-induced ALI by improving liver function, inhibiting oxidative stress and inflammatory response, and liver pathological damage. This work provides a new alternative method for effectively preventing ALI and improving liver function.


Assuntos
Angelica sinensis , Nanopartículas , Selênio , Selênio/farmacologia , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Fígado , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...